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Decay of the Remanent Magnetization 
in the Asymmetric Spin Chain 
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The dynamics of the one-dimensional spin glass with asymmetric interactions 
between neighboring spins is considered. We confine ourselves to discrete 
couplings with values _+ 3. We show that the algebraic decay of the remanent 
magnetization of the infinite J - sp in  chain at zero temperature is only valid 
for symmetric couplings. Our analytical investigations as well as computer 
simulations show stretched exponential decay for any finite concentration 
of antisymmetric bonds. Thus, the asymmetric +J-spin chain shows an 
asymmetry-induced phase transition at zero temperature. 

KEY WORDS: Ising model; spin glasses; relaxation phenomena; random 
matrices; multispin coding. 

1. I N T R O D U C T I O N  

Physical models of  interacting spin systems have at least one feature in 
common:  the symmetry  of  their interactions, which is due to Newton ' s  law 
" a c t i o = r e a c t i o . "  Since the variables of these models are microscopic 
objects, they have to obey this fundamental  physical law. But if one con- 
siders larger objects, like neurons,  (1) antibodies, (2) or populat ions (see ref. 3 
and references therein), their interaction on a phenomenological  level of 
description does not  need to satisfy any physical law. For  instance, the way 
one object within a system acts upon  another  object can be completely 
independent  of  the way the latter acts upon  the first. 

The application of statistical physics ideas to other branches of 
science, trying to model  and calculate natural  phenomena,  has a long tradi- 
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tion. But in the last few years this expansion of theoretical physics (or 
penetration of biology, especially neurophysiology and immunology, com- 
puter science, or psychology, etc., into physics) becomes more and more 
obvious and is strongly correlated with the overwhelming use of modern 
computers in theoretical physics. For a review of, e.g., biologically 
motivated cellular automata see ref. 4 and references therein. Another well- 
known example is the so-called spin-glass model of neural networks, (1) and 
the immense work that has been undertaken in this research field is mainly 
concerned with the improvement of the original model (5) to develop and 
investigate a powerful device capable of associative memory, generaliza- 
tion, learning, parallel computing, retrieving sequences, and so on. 

The aim of the present paper is more modest: motivated by the above 
activities and nonphysical models, we look for the possible consequences 
that can emerge if one ignores the restriction of symmetric interactions in 
(one-dimensional) spin systems. We do not want to speculate whether this 
plan could lead to a deeper understanding of neural networks. But the 
model considered here can be compared with, e.g., the spin chain with ran- 
dom field and its relevance for the theory of magnetism; and it is essentially 
the generalization of Glauber's model of a one-dimensional ferromagnet (6) 
to nonphysical interactions (using another language: a probabilistic cellular 
automaton with rules more general than those motivated by physics). 
Furthermore, it is a very interesting problem in nonequilibrium statistical 
physics to investigate the dynamical behavior of systems without the 
possibility of fulfilling any detailed balance condition and without the 
validity of such powerful tools like the fluctuation-dissipation theorem. In 
this context it should be mentioned that the asymmetric SK model, (v) 
which is the mean field version (i.e. in infinite dimensions) of the one- 
dimensional problem considered here, is still unsolved. (8-1~ This was one 
more reason for us to consider related models in lower dimensions. 

The central question for the asymmetric SK model is whether there is 
a spin-glass transition, i.e., a transition to a phase with broken ergodicity, 
if the couplings are not symmetric any more. In the disordered +J-spin 
chain one has no spin-glass behavior even for symmetric couplings, but one 
can nevertheless ask for changes in the relaxational behavior if asymmetry 
is present. At finite temperatures the relaxation of this model (of, e.g., the 
remanent magnetization) is always exponential. But at zero temperature 
there is a transition from algebraic to stretched exponential decay in the 
presence of asymmetric couplings, as was claimed in an earlier publi- 
cation. (11) The present paper tries to prove this statement and to shed light 
on the interesting physics of this simple model. 

The paper is organized as follows: In Section 2 the necessary defini- 
tions are given and known results are referred to as far as they are relevant 
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for the understanding of the analytical investigations. Section 3 presents the 
asymmetric +J-spin chain, and its connection to the bond-diluted spin 
chain is cleared up. Here also (i) the models with only one asymmetric 
bond are solved (the finite ring and the infinite chain with one spin fixed), 
as well as (ii) the periodic chain, where an antisymmetric bond occurs 
always after k symmetric bonds. These solvable cases give us a feeling for 
the disordered case and lead us to the hypothesis of a stretched exponential 
decay of the remanent magnetization. 

The spectrum of the tridiagonal matrix describing the relaxation of the 
magnetization is investigated in Section 4. First we apply the transfer 
matrix technique and find the Lifshitz singularity at the band edge of the 
spectrum leading to stretched exponential decay. Then we compare the 
moments of the spectral density with those of a diluted spin chain (with 
_+ J interactions only) and demonstrate that the latter give an upper bound 
to the first. Since the diluted model shows a stretched exponential decay, 
it follows that the remanent magnetization of the asymmetric _+J-spin 
chain cannot decay faster. In Section 5 results of computer simulations are 
presented, which are in full accordance with the theoretical predictions 
made in the previous sections. Furthermore, the simulations of the asym- 
metric _+J-spin glass in two dimensions on the square lattice are shown. 
Conclusions and the outlook for forthcoming work (12) on the same kinds 
of models with external fields and continuous couplings instead of discrete 
ones considered here are given in Section 6. There are also two appendices 
containing some technical details. 

2. D E F I N I T I O N S  A N D  K N O W N  RESULTS 

The model which we consider is defined as follows: The dynamical 
variables are N Ising spins cri, taking on the values + 1 and - l and inter- 
acting via a set of couplings J~. Each spin has a local field 

hi=bi~-  ~ Jij.~j (2.1) 
j( ~ i) 

Following Glauber, (6) we assume that the spins are coupled to a heat bath, 
leading to transition probabilities 

w(cr~--, or'i) = 1(1 + ~r I tanh flhi) (2.2) 

where/~ is the inverse temperature. Note that even in the case of vanishing 
temperature some noise is present, since for zero field h i the spin flips 
stochastically with probability one-half. The stochastic process of the 
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movement of the system through its configuration space is described by a 
master equation for the probability distribution of spin configurations 

N 

P { a ; t } = - Z  {w(ae~-~r , )P{a ; t}-w(-cr~- -*~r , )  
i = l  

X P { ( o  1 ..... - -o ' i , . . . ,  a N ) ;  t}} ( 2 . 3 )  

Spatial correlations among the spins at equal times can be calculated via 

8 ( a i l . . . a i k ) ( t )  = 
_a 

= - 2  a i l . . . a i k  ~ w ( % ~  -ai , )  (2.4) 
l=1  

The reason why we consider only a one-dimensional system with nearest 
neighbor interactions in zero field (be = 0) is that these equations simplify 
considerably in this case. We have h i=  Ji, i-  l ai 1 + J~,~+ l a~+ 1 (choosing 
periodic boundary conditions, we identify aX+l with o- 1 and % with oN), 

1 tanh flh;. = 5 {7~,e- ~ o ' i -  1 -~ ~i,i+ 1 (~i + l } (2.5) 

with 

7,,~+ 1 = tanh/~(Ji, i+ ~ + J,,e l) + tanh fl(Ji,,+ 1 - J~,e_ ~) (2.6) 

Remembering the transition probabilities (2.2), one gets from (2.4) 

8 

~-'~ (f f i l ' ' ' f f i l__l(~)i l ,  il l(~il--l ~l-~)il, i l+l(Ti l+l) f f i l+t ' ' ' (T ik  ) 
l=1 

(2.7) 

The case k = 1 yields the equation for the magnetization m e ( t ) =  (ae)(t):  

~tmi(t)  = - m , ( t ) + ~ { T i , e  fm i  l + 7i, i+ lmi+~}  (2.8) 

where according to the cyclic boundary condition we identify mN+ l with 
ml and m o with m u. 

Since we are mainly interested in the relaxational behavior of the 
magnetization, let us first clarify its relevance for the remaining correlation 
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functions. Consider, for example, the two-spin correlation function 
Cu(t ) = (a~ak)(t). Because of the constraint Ci~(t)= 1 (o -2 = 1), Eq. (2.7) is 
for k = 2 an inhomogeneous system of linear differential equations, in con- 
trast to (2.8). Without this constraint all solutions _re(t) of the system (2.8) 
for the magnetization would give us a set of linear independent solutions 
for Cij(t), namely Cij(t)= m~/(t)m~(t), where _m ~ and m b are two solutions 
of (2.8). Thus, without these constraints one could strictly conclude that 
the relaxational behavior of ( ~ 1 " "  aik) is completely determined by that 
of the magnetization. But because the effect of the constraint is not simply 
adding a time-independent inhomogeneity, but also subtracting some terms 
from the unconstrained system, things are more complicated/6) 
Nevertheless, we expect the above conclusion to hold. 

Let us now specify the interactions Ji, i+l among the spins. The 
simplest choice is Ji, i+~=J>O, resulting in Glauber's model for a one- 
dimensional ferromagnet: 

c~ 7 {rni +mi+l} ,  7 =tgh(2flJ)  (2.9) ~ m i  = - m i + ~  1 

Solving this system means diagonalizing the matrix 

7 _ _ F = - / + ~ A  with A =  

~0 1 

1 0 

1 

�9 
1 

1 

0 o ',01 -. .. (2.10) 

' '  O 

1 

which is nearly tridiagonal apart from the dements Ally and AN1 due to 
the periodic boundary condition. The eigenvalues and corresponding 
eigenvectors are 

27zn 
2n= --1 + 7 " c ~  N '  n = 1,..., N 

$ ( 2 )  1/2 sin --2rcnJN for n = 1,..., I~N ] 
n 

for  I q+l,, 

(2.11) 

For nonvanishing temperature one has ,/< 1 and therefore the decay of the 
remanent magnetization and also of other correlation functions is exponen- 
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tial with relaxation times smaller than ( 1 - 7 )  -1. Critical slowing down 
(indicating a transition to long-range order) occurs for the infinite system 
(N-~ oo) at zero temperature. Consider the density of eigenvalues of __F (the 
spectral density), 

p (2)=  ~r N {number of eigenvalues of _A_ in the interval 

X [ 2 -  ~---~2, A + ~ 1  } (2.12) 

where one gets from (2.11) for 7 = 1 ( T = 0 )  

1 1 
p ( 2 ) - x  [ 1 _ ( s  1)231 n for 2e E-2,03 (2.13) 

and zero otherwise. Thus, one has an algebraic singularity at the zero 
eigenvalue: p(2)oc 121-1/2 for 121 ~ 1, leading via Laplace transformation to 
an algebraic decay of the remanent magnetization: 

M(t) = ~  (~Ti(t) cri(O)>oc for t>~l (2.14) 
i = 1  

where a~(0) is a random initial configuration. Note that for an orthogonal 
diagonalizable matrix _F the remanent magnetization is indeed the Laplace 
transform of the spectral density: 

M(t) -- f d2 p(2) e ~' (2.15) 

because a random initial configuration of the spins can be mapped onto a 
random superposition of eigenvectors of _F and to get the probability 
measure on the basis of eigenvectors, one just rotates the N-dimensional 
hypercube, representing the initial configuration of the spins, by an 
orthogonal transformation that diagonalizes __F. 

The next case to be considered is the + J  spin glass. Now, 
Yi, i+ 1 = ~i+ 1,i = _7/2, which means the off-diagonals of A are occupied by 
+ 1 and - 1  in a random manner. But apart from a frustration emerging 
from the cyclic boundary condition, nothing new can happen because all 
- 1  on the off-diagonal can be gauged away by a possible transformation 
ai--*-~ri. Only if sign(Y12T23"''TU_l, XTU, 1)=--1 is one left with one 
antiferromagnetic bond, leading to the absence of the eigenvalue 2 = 0. The 
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spectral density is not altered by this possibility (since the limit N---, oo is 
performed). Hence the remanent magnetization of the (symmetric) +J-spin 
chain decays also algebraically at zero temperature. 

Before we come to the asymmetric case, we want to treat still another 
solvable model: the diluted one-dimensional ferromagnet (or the diluted 
_+J spin glass, which is nearly the same, as we saw above). Here the bonds 
are removed randomly: 

J with probability p (2.16) 
Ji, e+ 1 = Je+ 1,i = with probability 1 - p 

Note that the infinite chain splits into finite ferromagnetic chains of length 
l with free boundaries. The probability of a randomly chosen spin to 
belong to such a segment l is pt=l(1-p)Zp ~-1 and the remanent 
magnetization of the diluted ferromagnetic chain is given by the remanent 
magnetization of these finite chains weighted with their probabilities: 

M(t) = ~ /(1 _p)2 p,-2M,(t ) (2.17) 
/ = 1  

Since 

Mt(t)oc exp t ' ( -  l + COS l - ~ )  

for zero temperature and long times t, one can evaluate the asymptotic 
behavior of the sum (2.17) by approximating it through an integral and 
applying the method of steepest descent, resulting in stretched exponential 
decay with exponent 1/3, (13-15)'3 

f M(t) ocexp \ - v(P)] for t>>T(p) (2.18) 

where v(p) is a time scale depending on the dilution. For smaller time 
scales than r(p)  the relaxational behavior is different. 

Thus, we have a phase transition at zero temperature from algebraic 
to stretched exponential decay that is induced by the dilution of the chain 
and which occurs at p = 1. We emphazise this fact since there are certain 
similarities between the diluted chain and the asymmetric spin chain, as 
will be explained below. 

3 For a related work on stretched exponential decay in disordered Ising systems in general 
dimensions see ref. 16. 
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3. THE A S Y M M E T R I C  +_J-SPIN CHAIN 

By randomly introducing antisymmetric bond pairs J,.i+l = - J i + l , ,  
into a _+J-spin chain, one gets the asymmetric +J-spin chain, i.e., 
Ji, i+_l = +J, Ji, i+l=Ji+l , i  with probability p and Ji, i+ l= - J i+~ ,e  with 
probability 1 -  p. The tridiagonal matrix __F= -_/+ (~/2)A that has to be 
diagonalized to solve the system (2.8) is now no longer symmetric and 2 is 
given by 

t o o? oN 1 o? o ol �9 

d =  O; 0 . .  (3.1) 
�9 , , ' , , ' . , 

0 . .  o o ;  1 

Ofv ON 1 0 

where0 + ~ { - 1 ,  +1} and 

+ 1 with probability p (3.2) 
0+ 0 7  = -~1 with probability 1 - p 

To get rid of some superfluous signs, one can introduce new spin variables 
and new fields 

f f i  = J 1 2 J 2 3  " ' "  J i -  1,iffi a n d  ~i = J 1 2 J 2 3  " ' "  J i -  t,ihi (3.3) 

by which the matrix to be diagonalized becomes 

t 001 1 ON ~ 1 0 1 @ 

.3= 02 0 "'. 

@ 0 1 

ON_ 1 0 

with 0i= 070 + (3.4) 

[Here it is assumed that sign(J12J23-.-JN-1,NJNI) = q-1.] This means that 
the asymmetric spin chain is equivalent to a chain where each spin has a 
positive coupling coming from its right neighbor and a coupling that is 
positive or negative with probability p or 1 - p  coming from its left 
neighbor. This formulation is most advantageous for computer simulations 
and will be used in Section 5. 
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As one can see from (3.4), the matrix is not symmetric any more, but 
can be symmetrized by using a similarity transformation resulting in a 
complex symmetric matrix =3 with 

j =  

l O Ol ON 1 01 0 02 Q) 
02 0 "'. 

�9 , . " . , " , . 

@ "'. 0 ON 1 
O N  O N -  1 0 

with Ok = (070[-)1/2 (3.5) 

There is no way out of the fact that _A needs not to be diagonalizable. 
Still (because of the symmetry of _j) the eigenvectors corresponding to 
different eigenvalues are orthogonal and linear independent eigenvectors 
corresponding to multiple eigenvalues can be orthogonalized, but the 
algebraic and geometric multiplicity of eigenvalues needs not to be 
the same any more. If we arbitrarily exclude these cases by restricting the 
ensemble of random matrices, we can suppose that A is diagonalizable by 
an orthogonal transformation. We shall see later that these excluded cases 
in fact do not occur very often, but it needs to be clarified whether the 
restricted ensemble has full measure or whether the degenerate cases have 
any qualitative consequences for the results. 

The first thing one can learn about the spectrum of A (respectively ~)  
is the following: From linear algebra one knows that 

Max{Re 212 eigenvalue of__A} ~< Max{2r2 eigenvalue of Re =A} (3.6) 

where Re _A means the real part of the matrix _j. This real symmetric 

matrix Re _j looks similar to the matrix of the corresponding diluted chain, 
where each antisymmetric bond pair is replaced by a removed bond pair. 

The similarity is not complete, because the free boundary conditions of 
the finite segments of the bond-diluted chain would imply a two times 
larger element in the first and last rows of the corresponding block matrix 
(leading to an eigenvalue zero, as it should be). This is not the case for 
Re _A. The isolated I x l block matrices of Re A with the same elements in 

- -  = 

the first and last rows as in the others occur when one considers a finite 
ferromagnetic chain of length I, where the first and the last spins are 
coupled to the left, respectively right, with a "chaotic" spin flipping ran- 
domly in time and thus having a zero magnetization. This picture is even 
more adequate for the asymmetric chain, since an antisymmetric bond pair 
produces this chaos, as we shall see later. The difference between the 
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spectrum of both models, the one with free boundaries and the other with 
chaotic spin at the boundaries, is not quite large (as one can easily 
calculate), so that we shall call Re =A the matrix of the corresponding 
diluted model. 

If within the asymmetric chain the longest segment of spins interacting 
via symmetric bond pairs only has length l . . . .  the inequality (3.6) implies 
that 

7~ 
Max{Re 212 eigenvalue of =A} < cos/max + 2 (3.7) 

In other words, the remanent magnetization of a (finite or infinite) 
asymmetric spin chain with not more than lm,x symmetric bond pairs in 
succession decays exponentially with a relaxation time smaller than 
(l --COS[g/(/ma x -I-2)])-1.  This can also be seen in the following examples. 

3.1. One Antisymmetric Bond 

Consider the finite ring first. Let all 01= 1 [see (3.4)] except ON= --1. 
Then the impurity, i.e., the antisymmetric bond pair, is located between an 
and al .  The eigenvalues of A are given by 

7CY/ 
2(n) = cos -~ - ( n = l  ..... N) and ,~=0 (3.8) 

For N even, the root ~ = 0 of the secular equation of A is twofold, but there 
exists only one zero-eigenvector of the matrix A. This is an example of the 
above-mentioned degeneracy of the matrix _A. The eigenvectors are given 
by 

. nn i  
san - -  for n even 

N 
ml")= ,] (3.9) 

[s in  nn( N - 1) for nodd  

Furthermore, one observes (because the eigenvalues of Re _A are 2(n)= 
c o s [ r m / ( N +  1)], n =  1 ..... N) that all eigenvalues of A are smaller than 
Max{212 eigenvalue of Re _j} = c o s [ 1 / ( N +  1)], i.e., smaller than the 
largest eigenvalue of the corresponding diluted chain. Finally, it can be 
seen that the remanent magnetization decays completely to zero, whereas 
in the finite ferromagnetic ring it decays with probability one to a non- 
vanishing value. This indicates that the influence of the impurity spreads 
through the whole chain after long enough time. 
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This epidemic effect of a single impurity can also be seen in the 
following situation: Consider a half-infinite chain, where the first spin is 
fixed (~0 = +1) and all bonds are symmetric and equal to +1 except one 
antisymmetric" bond pair placed k bonds away from the fixed spin (i.e., 
Jk, k+l = --J  for one k~>2 and all other Ji, i+l = +J;  see Fig. 1). Then the 
stationary values of the magnetizations are given by 

(1 i --1, ,k 
m i = t  12k+ (3.10) 

t?k+T i>k 

If all bonds were ferromagnetic, this chain would become fully magnetized 
(i.e., mi=  1 for all sites i). The presence of one antisymmetric bond pair 
reduces this magnetization to a much smaller value (depending on the 
distance between the fixed spin and the impurity) within the whole chain. 

This behavior can be explained by the following observation. Look at 
two spins a~ and a~+ 1 to the left and right of an antisymmetric bond pair 
J~,i+ 1 = - 1 ,  J~+ 1,i= +1. Suppose the left spin a~ points upward. If the right 
spin ai+l points downward, it has either zero or positive field (depending 
on its right neighbor ~i+2)- Hence, it flips at least with probability one-half. 
The only chance for it not to flip is to point upward, too. But in this case 
the left spin has either zero or positive field (depending on its left neighbor 
~i-1), which means that now this spin flips at least with probability one- 
half. Thus, in all possible situations an antisymmetric bond pair is a source 

T 
0 1 2 .............................. k - 1  k k + l  k + 2  ............... 

7Tt~ 

1"12/ 

1 2 .............................. k - 1  k k + l  k + 2  ............... i 

Fig. 1. The half-infinite spin chain. The leftmost spin is fixed; a single antisymmetric bond 
pair is located between a k and crk+l, as indicated above. The resulting values for the steady 
state of the magnetizations are depicted below. 

822/64/1-2-22 
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of complete randomness within the chain since one of the two neighboring 
spins is always flipping in a random manner. 

Considering, for example, an initially fully magnetized ferromagnetic 
spin chain with only one antisymmetric bond pair, this impurity produces 
disturbances of flipped spins that propagate like a random walk in one 
dimension through the whole chain. If this chain is finite of length l (or one 
looks at finite segments, bounded by two antisymmetric bonds, within a 
infinite chain), this process destroys the magnetization after a time of the 
order l 2. This is also the order of magnitude of the relaxation time of a 
finite chain or isolated segment of length l consisting only of symmetric 
bonds. These reflections lead us to detect the analogy of the relaxational 
behavior of the asymmetric chain and the corresponding diluted chain: 

For the sake of simplicity, we suppose that initially all spins are point- 
ing upward. The asymmetric spin chain is composed of finite segments of 
purely ferromagnetic bonds bounded to the left and right by antisymmetric 
bond pairs, which--as we mentioned above--produce random spin flips 
propagating randomly througt/ the fully magnetized segments�9 Thus, the 
magnetization of a segment of length l is destroyed after a characteristic 
time proportional to 12, but the probability of a spin to be a member 
of such a segment is l ( 1 , p ) 2 p t  1. Hence, the magnetization is 
approximately given by 

M(t )~  ~ l ( 1 -p )2  pt 1 exp(_t/cl 2) (3.11) 
l = 1  

which results in a stretched exponential decay for large enough time, in 
complete analogy to the diluted chain [see (2.17), (2.18)]. 

3.2. Per iodic Chain 

Consider now a spin chain where an antisymmetric bond pair occurs 
periodically after k ferromagnetic bond pairs, i.e., 

=~-J i+l , i  if i = k + l ,  2 k + 2 , 3 k + 3  .... (3.12) 
Ji, i + 1 ( + Je + 1,i otherwise 

i001 1 0 0; �9 

A(n) = 0y 0 '- .  (3.13) 
�9 . . ' , . �9 . , 

0 . .  0 + , 

02_1 0 

Defining the matrix 
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[cf. (3.1)], one observes for the determinants D(~)'= det(A(~)+__2(n)), 
where I (n) is the (n + 1)x (n + 1) unity matrix, the following recursion 
relation: 

D ('+ ~) = 2D ~ ) -  OnD (n- ~), with D (~ = l, D (1) = 2 (3.14) 

In this case one has 0 ~ = 0 + 0 ~ = - 1  f o r n = k + l ,  2 k + 2  .... and 0n= +1 
otherwise. The zeros of D (N 1)(2) are the eigenvalues of _A. Furthermore, 
note that the nth approximants of a continued fraction obey (Iv) 

s(n) = 1 = An(it) (3.15) 
01 B~(it) 

2 -  
0z 

i t -  

where An(it ) and 
denominator 
D(n)(2), i.e., 

0n 
2 

Bn(it) are polynomials 
satisfies the same recursion 

D (N 1)(it) = B N _  1(it ) 

of degree n in it and the 
relation as the determinats 

(3.16) 

Since one knows how to calculate the value of a periodic continued 
fraction, one can get information about the distribution of eigenvalues 
of the matrix 2 in the limit N---,oo via the singularities of S(2)= 
limN~ o o  S ( N ) ( i t )  �9 In Appendix A we show that 

2 (3.17) 

with 

b k ( X ) = ( p + _ _ p _ ) p k + p ~  1 (1 )2 pk+__~_' p_+=~_+ ~ - x  2 (3.18) 

and x = 2-1. (Remember that to get the eigenvalues of F itself one has to 
multiply 2 with 7/2 and shift the result by -1 . )  The poles of bk(x) are the 
solutions of pk+ = p k ,  which are x =  +_-[2cos(~n/k)] -1, n = l  ..... k. This 
means for the Laplace transform M ( z ) =  ~ dt e x p ( - z t ) M ( t )  of the 
remanent magnetization that it has poles at 

7 7~n 
zn= - 1  _+ ~ cos ~-,  n = 1,..., k -  1 (3.19) 
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and no other poles (except z = - 1 ) .  But there are other algebraic 
singularities [of the form (Z-Zo) m near certain values Zo] emerging from 
the cuts of the square root in S(x). Therefore we have to look for the 
values of x where b~(x) + 4x 2 = 0. Because there is no analytical solution of 
this equation for general k, we investigated the 2k roots of this equation 
numerically; see Fig. 2: Two cuts belong to one pole, one of them leaving 

4 1 1 1 ~  

X 
o x~. ~ f  

- 4  I I L 
- 2  -1  

i I i I 

j r  / , .  

i ~ I i I 
o 1 2 

Re x 

(a) 

• y ~ ,  _ #  

- 2  

- 4  i I 

. F 7  

I I I I I 
2 4 

Re x 

(b) 
Fig. 2. The arrangement of the poles and algebraic cuts of the continued fraction (3.15) 
within the complex plane of the variable x. (a) k = 10 (even); (b) k =  11 (odd). The circle of 
radius one-half and center zero indicates a part of the domain of analyticity (in the variable 
x) of the continued fraction (3.15). The point x = 1/2 corresponds to the zero eigenvalue of 
the matrix F. For further explanation see text. 
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into the upper complex half-plane, the other into the lower half-plane, and 
terminate in the above-mentioned algebraic singularities, where the argu- 
ment of the square root becomes zero. There are four (if k is even) or two 
(if k is odd) cuts belonging to the poles of bk(x) at infinity. One observes 
that the density of the singularities in the vicinity of x = 1/2 [corresponding 
to z = 0, which determines the asymptotic behavior of M(t)]  is not altered 
in an essential way by the presence of these cuts. 

Thus one concludes that the asymptotic behavior of the remanent 
magnetization is similar to that having poles in its Laplace transform 
located at zn; see (3.19). But these can be compared with the eigenvalues 
of the matrix F of the corresponding, periodically diluted chain that is 
simply identical to one finite chain of length k + 1 with "chaotic" spin at 
the boundaries. Since the eigenvalues of the latter are 

cos ?22' A~= - 1 + ~  n = l  ..... k + l  

we observe that the remanent magnetization of the periodic asymmetric 
chain decays faster than the corresponding diluted chain. 

4. I N V E S T I G A T I O N  OF T H E  S P E C T R U M  

As we mentioned earlier, we expect a stretched exponential decay of 
the remanent magnetization of the asymmetric _+ J-spin chain at zero tem- 
perature, since we detected the analogy to a ferromagnetic spin chain with 
randomly distributed "chaotic" spins, which we have called the corre- 
sponding diluted model. In this section we intend to test this expectation 
analytically. As we mentioned in the beginning of the previous section, we 
assume that _A is diagonalizable and hence the remanent magnetization is 
given by 

M(t) = fc d22 e~"P(2) (4.1) 

where p(2) is the spectral density of the matrix =F [see text before (3.1)]. 
Therefore we investigate in this section the density of eigenvalues of the 
matrix A (3.1), especially its behavior in the vicinity of the point 2 = 2. This 
point corresponds to the value 2 = 0 within the spectrum of the matrix _F 
and the density of eigenvalues there determines the asymptotic behavior of 
M(t). 

To get some insight into the complexity of the problem look at Fig. 3, 
where we plotted within the complex plane the eigenvalues of several ran- 
dom matrices A for fixed amount p of symmetric bond pairs. As we know, 



344 Rieger and Schreckenberg 

~< 

1.5 

! I 
0 

- 5 

- i  0 

- i  . 5  

i l l l l l l l [ i  i i l l l l  I I I  I I I I I I  IGF'-F 

. . , . . :  

: ' ' : . , , , , ~ . ' . i , ' , ~ . . . , ( ,  

i i l ~ t l  

- 1 . 5  - . 5  0 .5  1 . 0  

Re h 

( a )  

~ . 0  I l l l l  I I  I I i l l  I I I I I I I  

1 . 5  

1 . 0  

. . . . .  i 
.5  �9 ::. . I .  :.: - 

# , ~  . . f  . . , ^ ~ r .  ~. ~ , . , ~ % . .  t . .  
' . : -  , '~ 2.~ ' : "  -.':~ ' :: ' ,~ .(::" ~-: ,  ":~" {.~- ;~, , : .  " 

- - . 5  ~ -  " " ."." "~" . ' : - .  " 

- 1  

_ _ ~ .  l l l l l l l l l l i l  I I J i l l  i i I I I l l l l l l  

- 1 . 5  - . 5  0 .5  1 . 0  

Re h 

(b) 

Pig. 3. The spectrum of samples of tridiagonal matrices A (3.1) for different values of p: (a) 
p=0 .95 ,  ( b ) p = 0 . 9 0 ,  ( c ) p = 0 . 8 5 .  Each point corresponds to one eigenvalue of an N x N  
matrix; N is 500 and for each picture ten matrices have been diagonalized numerically. 
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Fig. 3. (Continued) 

for p = 1 the spectrum of A is contained in the interval [ - 2 ,  2] of the real 
axis with diverging density at the band edges - 2  and +2. For p < 1 the 
spectrum explodes into the upper and lower half-planes and forms 
extremely complicated structures. We did not gather enough numerical 
data to give detailed information about, e.g., the support of the spectrum, 
but we expect it to be a fractal (as in disordered binary alloys (~8,~9~) and 
perhaps future work will also detect a connection to Julia sets (2~ because, 
as we shall see later, an equivalent formulation of the eigenvalue problem 
makes use of iterated M6bius transformations. 

The first thing one is tempted to do if one wants to make some 
statements about the spectrum of tridiagonal matrices is to apply Dyson's 
formalism, (21) which works (in principle) in our case, because the elements 
are not correlated [as is most obvious in the representation (3.4)]. But as 
was mentioned already in an earlier publication, (m this formulation leads 
to a functional equation that is not solvable for this kind of distribution of 
the random variables. This should not have been expected, since almost all 
distributions, especially discrete ones, within the field of disordered one- 
dimensional systems lead to these difficulties. There seems also to be no 
approximation technique that would be able to handle this equation, at 
least in the vicinity of the most interesting eigenvalue 2 = 2 of A. 

Our next step is to investigate the spectrum by the transfer matrix 
method and by the method of moments. 
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4.1. Transfer  Mat r ix  Me thod  

The eigenvalues of the matrix _A (3,1) are determined--via a similarity 
transformation to the matrix (3.4)--by the eigenvalue equation 

"~mi = O i m i -  1 + m i +  1 (4.2) 

where 0~= +1 with probability p and 0 ~ = - 1  with probability 1 - p .  
Equation (4.2) can be expressed with the help of transfer matrices: 

( m i + , ) = ( ~  --Oi']( m i 
m i 0 J\mi_l) '  m~ (4.3) 

= :  TO i 

The boundary conditions do not influence the distribution of eigenvalues in 
the limit N ~  ~.  Choose/~ in such a way that 2 = 2  cos/~ ( R e / ~  [0, zt[); 
the eigenvalues of T+ are given by x=exp(+i/~). If we concentrate on 
real eigenvalues, then 2~ [ - 2 ,  2] and hence / ~  [0, ~[. It is con- 
venient u9'22) to perform a transformation that diagonalizes T+: 

~_.+~=U_~T~U=(e;~ O) 1 ( 1  - 1 )  (4.4) 
ei~ ' U=(2isin~)l/2 e-i~ _ell3 

Hence, each symmetric bond pair yields a simple transformation of the 
vector U(mi, mi_~) r, whereas an antisymmetric bond pair results in the 
following transfer matrix: 

~---~=U-'T 1U-  1 //cos cSe -ia - e  ~+i~ 
- is in6 \ e - ir  _cos6ei~ j = : Q ~  (4.5) 

where we defined 6=f l  because then Q ~ ( y + I ) j - I = Q j ~ .  With 
(b~ +, b2) r : =  u-l(mn+l, ran) r, the eigenvalue problem can be formulated 
as follows: 

(11) --mN (4.6) ( b L  1 ~ ~__ .@-- - 1.o~- 1 , , , ~ - ' - N I C  , c=(2isinfl)l/2 ~ b ~ l j  - -  n - -  n + l  

with (b~-, b o )r = ~(e~)r, ~ = md(2i sin ~)1/2. It is sufficient to consider the 
quotient z , ' =  b+/b~. Then the transformations z=~z= ~ become 
M6bius transformations: 

fexp(-2i/~).zn if 0n= +1 (symmetric bond) 

z,_l = ~ ~ az,+b (4.7) 
I -~z-~aga, -" R~(z,) if 0, = -1  (antisymmetric bond) 
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starting at z N = 1 and ending at z0 = e 2~. The above formula is only fully 
correct for real 6, i.e., real eigenvalues 2, since a=coscSe -~/~ and 
b - -  - e  ~+~6. If 3 has a nonvanishing imaginary part, it is cos 6 ~ (cos 6)*, 
and a* within the denominator  on the rhs of (4.7) has to be replaced by 
cos be +i~ and then this M6bius transformation no longer maps points of 
the unit circle onto points on the unit circle. In what follows we therefore 
restrict our considerations to real eigenvalues and since z N = 1, all points z, 
are located on the unit circle. 

Since det Q ~ = - 1  for all /~, the corresponding M6bius transforma- 
tions are hyperbolic, i.e., have two fixed ponts, one of them attractive and 
the other repulsive. Using this fact and adopting the arguments of the 
literature, (~9'22) one can now proove the existence of special frequencies 
(numbers that cannot be eigenvalues, or values, where the spectral density 
has to vanish): Consider the M6bius transformation R~. Its fixed points 
are given by 

z_+ = e  -+i~+i~(z+l), e-+i~ = c o s / ~  cos  l/? ~i(1-cos2f lcosZl f l )  1/2 (4.8) 

= : c o s  ~ 

where z+ is repulsive [IR't~(z+)l > 1] and z is attractive []R'l~(z+)l < 1]. 
Let/~ = ~/L; then L symmetric bond pairs in succession transform zn into 
itself: zn _ L = e -2i~Lz n = Z, if 0n = 0n_ 1 . . . . .  0n - (L - ~) = + 1. Hence, the 
whole chain can be described by segments AS ~ ( l = 0  ..... L - 1 ) ,  i.e., one 
antisymmetric bond A following l symmetric bonds S. Therefore one has to 
satisfy 

e2'#=Rhr . . . . .  Rl~/~(1), with l ,e  {1,..., L} (4.9) 

But, as one can easily calculate for large L, the attractive fixed points z J  
of Rj~ are all within the segment {ei~l q~ e [0, ~/L[}  of the unit circle and 
the repulsive fixed points are located outside this segment. Thus the point 
zn can never be fulfilled. In other words, 2 = cos ~/L is no eigenvalue of A 
and is therefore a special frequency. 

Now choose 2 close to the band edge, i.e., 0 </3 ~ 1. Let/~ be no spe- 
cial frequency. As one can see from (4.7) in the case of an antisymmetric 
bond the variable zn is mapped into the vicinity of the attractive fixed point 
of R~, whose phase is a bit smaller than/~. To satisfy boundary condition, 
z o = e 2i~, and this can only be achieved by a succession of symmetric bond 
pairs. The crucial point is that the M6bius transformation corresponding 
to a symmetric bond rotates z in the clockwise direction by an angle 2/ /and 
therefore we must have 2~z/2fl symmetric bonds in succession to reach Zo. 
But the probability of this event is p~p-l, i.e., very low if 0 </~ ~ 1. Since 
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2 = 2 cos/3 ~ 2 - /3  2, it follows for the density of the purely real eigenvalues 
of A 

f i ( 2 ) ~ e x p [ - - ~ l l o g p t ( 2 - 2 )  1/2 3 (4.10) 

which is a typical singularity occurring in the spectral density of disordered 
binary alloys, also called Lifshitz singularities. We derived this singularity 
at the band edge )o = 2 only for the purely real part of the spectrum. But 
note that 

f+2 f+2 ]m(t)] <~e-' dxeX'/2pRe(X ) with p , e (x )=  dyp(x+iy) (4.11) --2 --2 

where p(x + iy) is the spectral density of A (3.1). Hence the most important 
quantity is PRe(x), which we expect to be of the same form as the purely 
real part of the spectral density (4.10), as is indicated by the numerical 
diagonalizations of finite matrices (see Fig. 3). 

An immediate consequence of such an essential singularity (4.10) of 
ORe of A at the point 2 = 2 is--via the Laplace transform occuring on the 
rhs of the inequality in (4.11)--the stretched exponential decay of the 
remanent magnetizationl which we claimed above. 

4.2. M o m e n t s  of the Spectral  Density 

We return to Eq. (4.1) and expand the exponential function within the 
integrand. One observes that 

M ( t ) = e '  ~ a2v ( t ' ]  2~ (4.12) 
v=o (2v)] \ 2 J  

where 

av = fc d22 2VP(2) (4.13) 

are the moments of the spectral density of the matrix 2 [note that only the 
even moments of p()~) do not vanish, as will be clarified in Appendix A]. 
The asymptotic behavior of M(t) is determined by the asymptotic behavior 
of the moments azv (i.e., the limit v--* oe). When we can show that the 
moments of the matrix _A do not grow faster with v than those of the 
corresponding diluted model, we have proved that M(t) decays asymptoti- 
cally as the remanent magnetization of the corresponding diluted model, 
i.e., with stretched exponential. This will be shown below. 
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In Appendix A we derive the following equality: 

v 

a2v= ~ ~ ~(r~ ..... ri)(O r' ) ... (0  r~) (4.14) 
i -  1 r I , . . . ,  r i >1 1 

r l +  ' "  + r i = v  

where 0 is a random variable that is + 1 with probability p and - 1  with 
probability 1 - p, i.e., 

(Or) = {~ forf~ r eVenr odd (4.15) 

where r/= 2 p - 1 .  It is exactly this random variable that makes the dif- 
ference to the moments of the spectral density of the corresponding diluted 
model, where 0 is + 1 with probability p and 0 with probability 1 - p ,  
representing the removed bond pairs in an otherwise ferromagnetic chain. 
In other words 

r { < 1  (4.16) 
(Odi l )  =- P >r /  

Unfortunately, <0 r) is sometimes greater and sometimes smaller than 
<0~il), otherwise one could trivially write down an inequality for a2v. 

The factor ~ ( r l  ..... ri) denotes the number of closed walks in one 
dimension with nearest neighbor steps only, which visit exactly i+  1 dif- 
ferent sites, start at any of them (and return to it), and jump r~ times back 
and forth between the leftmost site and its right neighbor, r 2 times between 
the latter and its right neighbor, and so on. Its value is given by (231 

..... ' ) ( r ' + r '  r. r. 

The rhs of (4.14) is a sum over all possible closed walks of length 2v, each 
weighted by the product of several moments of the distribution of the 
random variable 0. The value of this product is given by t/y, where 
JV = # {rJ[ rj is odd}. If the frequencies (of jumping forth and back) rj are 
large, it is not important for the order of magnitude of ~(rl , . . . ,  ri) how 
many frequencies are odd. In this case one can think of frequencies rj to be 
even or odd both with probability one-half and this does not have much 
influence on the combinatorial factor (4.17). Suppose therefore that 

v { ~ ( i ) ( 1 ) ~  } 
a2v~ E Z Z JV" 2 t / Y ' ~ ( r ~  ..... r~) (4.18) 

i = 1  r l , . . . , r i > / 1  ~ = 0  
r l + - . - + r i = v  
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where the second sum within the brackets has replaced (as indicated) the 
product (0r~) ... (0  r') on the rhs of (4.14) and is just the sum over all 
possible choices of Y odd frequencies out of i frequencies, multiplied by 
their probabilities (1/2) i and their weight t/X. But this sum is equal to f 
and hence the rhs of (4.18) is identical to the expression for the moments 
of the corresponding diluted model. 

Let us discuss the underlying assumptions of the last conclusion: The 
property of the frequencies to be even or odd is certainly not random when 
the diameter i of the walk is as big as its length v. Because the walk has 
to return to its origin and has to go far away, it can mostly jump only one 
time forth and back between two neighboring sites: forth when it is on the 
way to its right or left end- -or  turning point - -and back when it returns. 
This means that rj has to be equal to one--which is an odd number--very 
often and hence for i ~  v the weight pi of the combinatorial factor is too 
large, since this weight originates in making no difference between odd 
and even frequencies. Furthermore, it is always Y ~<min{i, v - i }  ~ Iv/2] 
because the smallest even number greater than one is two and 
r 1 + . . .  + r i =  v has to be fulfilled. The last two objections would imply 
that the approximation (4.18) gives an upper bound for a2v and therefore 
the remanent magnetization of the diluted model gives an upper bound for 
the asymmetric model. 

Finally, we counted numerically (for fixed i and v) the number ni, v(g)  
of walks with g ( g = i - Y )  even frequencies rj and got the histograms 
depicted in Fig. 4, where in Fig. 4b we chose v = 24 and different values for 
i, and in Fig. 4a we chose i = v/2, v = 12, 24, 32. All results for n~,v(o ~) can 
be fitted by a Gaussian distribution, the points in Fig. 4a by 

2ai ( g -- xi)  2 
ni .2i(g) = (2rca/2)l/2 exp 20-~ (4.19) 

where the factor 2 is due to the fact that n~,v(C) = 0 for g odd if v and i are 
even. We get 

a 6 , 1 2 , 1 6  = 5 �9 105, 5-1011, 4-1015 

X6,12,16 = 2.5, 4.5, 6.5 (4.20) 

2 1.25, 2.5, 3 0"6,12,16 

This means that the peak of nr is located at a value x~ that is a little 
bit smaller than i/2 and the variance of n~,2,(g) grows linearly with i. This 
is exactly what we expect if the property of the frequencies r i being even is 
random. 

Finally, let us mention the fact that the fully asymmetric case (by 
which we denote the case p = 0.5 or ~/= 0) leads to an interesting corn- 
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binatorial problem of counting all closed, one-dimensional walks that are 
restricted to jump always an even number of times forth and back between 
neighboring sites. This is due to the fact that in this special case (0 r} is 
equal to zero for r odd, and is equal to unity for r even, so that only the 
above-mentioned walks contribute to the sum on the rhs of (4.14). 
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Fig. 4. (a) The number n~.,.(d ~) of walks with g even frequencies r 1 ..... r i ( v -  12, 24, 32, 
i=v/2) counted numerically. We fitted with the Gauss function (4.19) and obtained the 
parameters (4.20). (b) The same as in (a), but for v = 2 4  and different values of i; from top 
to bottom, i=9 ,  10, 11, 12, 13, 14. 
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5. N U M E R I C A L  S I M U L A T I O N S  

Now we want to test the theoretical predictions made in the preceding 
sections. To simulate the zero-temperature dynamics of the asymmetric 
spin chain (with discrete couplings) we used multispin coding techniques 
and parallel updating. Each spin has two neighbors, so that there are 
altogether four different configurations. Two of them yield a vanishing local 
field. Hence in approximately one-half of all cases the field acting upon the 
spin is zero and we have to generate a random number to flip the spin with 
probability one-half. To avoid if  structures, which make every multispin 
coding inefficient, and to produce random bits very fast we used the 
following trick. (24) The main loop of the program, containing the update 
process, is 

do 100 i = 1, I1 

ir(i) = ir(i - 250).xor. ir( i  - 103)  

nh = n(i - 1).eqv.jj(i) (5.1) 

m(i)  = ( ir(i) .and.(n(i  4- l ) .xor .nh)) .or . (n( i  4- 1).and.nh) 

lO0 continue 

The state of the individual spins is stored in the array n of length 11. Every 
bit of a computer word n(i) corresponds to one spin, so that n(i) contains 
32 (or 64) spins and the actual length of the chain is equal to 32 �9 !1 (or 
64 �9 11). Analogously, the couplings Ji, i -  ~ are stored within the array jj. The 
signs of the couplings Ji+ 1,i are gauged away, as was done in (3.3)-(3.4), 
so that they are all positive. The array ir is an array for the Kirkpatrick 
Stoll random number generator(25): if the elements i r ( - 2 4 9 )  to ir(0) are 
computer words whose bits are one and zero randomly with probability 
one-half, than this rule produces a new word with random bits. After the 
loop is completed, the words ir(11-249) to ir(ll) are shuffled to J r ( -249)  to 
ir(0). 

The variable nh contains the contribution of the left neighbors of the 
spins to their local field (i.e., a bit of nh is one iff ai_ ~ and Ji.i-1 have the 
same sign and it is zero otherwise). Consider now the last line of the loop, 
where re(i) contains the new values of the spins. The local field acting upon 
a spin is zero, if the corresponding bit in n(i + 1).xor.nh is one, because in 
that case ar and a~_ 1" J~.g-~ have different signs. Exactly in this case the 
spin has to take over one random bit in ir(i). If the field is not zero [i.e., 
the corresponding bits in n(i + 1) and nh are both one or both zero, and 
the xor operation is false], the bit has to take over the value of the opera- 
tion n(i + l) .and.nh. 

Using this loop, we reached on a sparc workstation a speed of 10 v spin 
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updates per second and for a typical run with 107 spins and t = 105 sweeps 
through the whole chain we needed 30 hours CPU time. On a Cray YMP 
one could expect a speedup of a factor 100, i.e., 109 spin updates per second 
(note that the above main loop can be completely vectorized). First we 
compared the decay of the remanent magnetization of the asymmetric spin 
chain with that of the corresponding diluted spin chain, where we replaced 
each antisymmetric bond occurring with probability 1 - p in the former by 
a removed bond pair in the latter [to simulate this we have of course to 
modify the update rule in (5.1)]. In Fig. 5 we show the result for p=0.9 
and immediately observe that M(t) of the asymmetric chain is always lower 
than that of the diluted chain, which decays with a stretched exponential 
(in fact M(t)=exp[-(t/3OO)l/2]/x/7 yields a very good fit for the latter, 
indicating that the asymptotic regime, where the exponent should be 1/3 
instead of 1/2, is still not reached). Furthermore, one sees for long times 
enormous fluctuations in the remanent magnetization of the asymmetric 
spin chain, whereas the diluted chain shows a much smoother behavior. 
This is due to the fact that in the latter for long times only the long 
segments relax; the shorter have reached a steady state, where the spin do 
not flip any more. In contrast, the antisymmetric bond pairs give rise to 
chaotic spin flips at all times , as described in Section 3. 
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Fig. 5. Comparision of the decay of the remanent  magnetization of the asymmetric spin 
chain (lower points) and the corresponding diluted chain (upper points) for p = 0.9 obtained 
via numerical simulation. The number  of spins is N = 1 0  7. The full curve is the fit mentioned 
in the text. 
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In Fig. 6 we show how the remanent magnetization approaches the 
algebraic decay (1/ , ,~)  for p ~ 1, by performing simulations for p = 0.9, 
0.99, and 0.995. There is always a characteristic time up to which the decay 
is nearly algebraic, but for greater times the decay gets faster. This is in full 
correspondence to the considerations of Section 3. To detect the correct 
relaxation behavior is difficult even in the diluted case, as we mentioned in 
connection with Fig. 5; nevertheless, we tried to extract the exponent v 
under the assumption that the decay is of the form e x p [ -  (t/~) v] in Fig. 7 
and found v = 0.25 _+ 0.10. 

Finally, we performed simulations of the same model in two dimen- 
sions. This means we considered a two-dimensional square lattice ins tead  
of a one-dimensional spin and coupled nearest neighbor spins by + J inter- 
actions, i.e., the sum over j on the rhs of the definition of the local field 
(2.1) is now over four nearest neighbor spins. In contrast to the one-dimen- 
sional case, which is equivalent to a ferromagnet in the symmetric case, one 
can now introduce the asymmetry in different ways. First one can think of 
a two-dimensional ferromagnet and introduce with probability 1 - p  
antisymmetric bond pairs for the ferromagnetic, symmetric bond pairs. 
Second one can think of a +Jspin-glass model in two dimensions and 
do there the same thing. In both cases we got an exponentially rapidly 
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Fig. 6. A log-log plot of the remanent magnetization of the asymmetric spin chain for 
different values of p: From top to bottom, p = 0.995, p = 0.99, p = 0.9. The points for larger 
times are averaged over certain time intervals. N is 107 and for each value of p we averaged 
over 100 configurations of the couplings. The straight line is the curve 1/x~, which is the 
decay for p = 1, i,e., the symmetric case. 
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Fig. 7. The logarithm of the remanent magnetization of the asymmetric spin chain for p = 0.9 
plotted against t" for different v (from top to bottom, 0.35, 0.30, 0.25, 0.20, 0.15). If the decay 
is stretched exponential with exponent v, the plot should give a straight line. One observes the 
different bendings of the two outermost curves v = 0.15 and v = 0.35. 

decaying remanent magnetization (see Fig. 8) starting with a random initial 
state. The difference lays in the fact that the remanent magnetization of the 
two-dimensional spin-glass model decays completely to zero even in the 
symmetric case, whereas in the ferromagnet with asymmetric interactions it 
decays to a nonvanishing if p is close enough to one. 

This can be understood as follows(26): Consider a part  of the system 
that is fully magnetized, e.g., all spins up in a certain region of the lattice. 
Suppose that in the midst of such a region only one antisymmetric bond 
connects two neighbors. If both would have only two neighbors, as in the 
one-dimensional case, one of the spins would certainly flip because it has 
zero field. But in two dimensions there are four neighbors, and hence the 
other three neighbors stabilize the spin against the influence of the spin by 
which it is connected with an antisymmetric bond pair. Thus, in a 
ferromagnet with asymmetry the remanent magnetization does not need to 
decay completely if only the concentration of noise-producing antisym- 
metric bond pairs is small enough. This is different in the spin-glass case. 
Because of the frustrations caused by the random distribution of ferro- and 
antiferromagnetic bond pairs, the local fields vanish very frequently. This 
gives rise to noise, even for symmetric couplings, and the remanent 
magnetization decays completely. 

Hence we conclude that in two dimensions there is no indication for 
a similar asymmetry-induced transition in the + J spin glass as observed in 

822/64 /1-2-23  
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Fig. 8. The remanent  magnetization of the asymmetric _ J spin glass in two dimensions (the 
y axis is logarithmic) containing antisymmetric bonds occurring with prbability p. The size of 
the systems is 1000 �9 1000 (i.e., N = 106; the individual curves are averaged over 100 runs. (a) 
The ferromagnet for p = 1 (squares) and p = 0.9 (crosses), (b) the spin glass for p = 1 (squares) 
and p = 0.9 (crosses). 
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the one-dimensional case. We conjecture that this is also true for higher 
dimensions. Since there is analytical (8) and numerical (9'1~ evidence for a 
transition in the mean field (i.e., infinite dimensional) version of this model, 
one can speculate whether there is a critical dimension above which this 
transition exists or not. 

6. C O N C L U S I O N  A N D  O U T L O O K  

We have demonstrated that the +J-spin chain shows at zero tem- 
perature a drastic change in its dynamics if asymmetry is introduced. This 
change is manifested by the decay of the remanent magnetization, which is 
algebraic for purely symmetric couplings and becomes stretched exponen- 
tial for any nonvanishing concentration of antisymmetric bond pairs in the 
infinite chain. The underlying picture is that of finite, purely symmetric 
segments, bounded by spins, which are coupled by an antisymmetric bond 
pair and therefore generate random noise. The chaotic flips of these spins 
produce kinks that move as a one-dimensional random walk through the 
finite segments and destroy the remanent magnetization. This leads to the 
similarity between the diluted (symmetric) spin chain and the model 
considered here. 

The dynamics of the asymmetric + J-spin chain is extremely difficult 
to investigate analytically, mainly due to the occurrence of complex eigen- 
values within the spectrum of the relaxation matrices. Although we are far 
from a complete understanding of this spectrum, which shows fascinating 
properties, we were able to prove the existence of special frequencies and 
detected a Lifshitz singularity at the band edge leading to stretched 
exponential decay. We think that it is worth to investigate further the 
spectrum of non-Hermitian (tridiagonal) matrices in the future. 

It is also interesting to consider other quantities than the remanent 
magnetization. As we mentioned earlier, we expect the dynamical decay for 
other correlation functions to remain the same. But if one looks, for 
instance, at the stationary state of spatial correlations among spins at dif- 
ferent sites, then even in the case of only one impurity one is confronted 
with a system of linear equation that we are unable to solve analytically by 
standard methods. Furthermore, it would be very interesting to calculate 
the size dependence of the entropy or even its increase with time in this 
simple model. (26) Again one is confronted with tremendous analytical dif- 
ficulties. Nevertheless, both cases can easily be investigated with numerical 
methods and we think that the simple, abstract model introduced in this 
paper is a rich but still unexplored source of insight into the non- 
equilibrium physics of the systems mentioned in the introduction. 
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The Glauber dynamics of the asymmetric + J  chain considered here 
can also be interpreted in a different way, yielding a connection to a whole 
class of similar models. The main point is the definition of the update 
process in the case when the local field is exactly zero. This can only 
happen in the _+J chain. In the above definition random numbers were 
chosen at every timestep and for every spin with zero field separately to fix 
the new state of these spins. This is equivalent to a model with annealed 
random fields with a symmetric distribution function, which satisfies the 
two conditions 

p rob{h i=0  } = 0  and prob{ Ihil > J }  = 0  (6.1) 

i.e., no ~i-function at h = 0 and the absolute value of h is bounded from 
above by J. The effect of these random fields is noise and therefore a 
vanishing remanent magnetization even at T = 0 .  Another way of inter- 
pretation is that a spin with vanishing local field chooses at random one of 
its two neighbors with probability 1/2 and takes into account only the local 
field caused by this neighbor. 

The situation changes drastically if instead of the annealing a 
quenched randomness is introduced. This can be achieved by choosing 
a quenched random field which remains the same for all times, or by 
choosing one of the two neighbors of each spin once at the beginning of the 
dynamical process and having the local field consist only of the contribu- 
tion of this neighbor. In both cases the remanent magnetization is no 
longer zero and the relaxation is exponential. A detailed analysis with 
analytical results for these models will be given elsewhere. (t2) 

There are essentially two known exact results for 1Dspin-glass 
dynamics: In ref. 28 a model with random infinite fields h i=  -o % 0, + oo 
is investigated. In fact this model can be mapped exactly (~2'15) on the trap- 
ping problem in 1D O4) and one can write down directly the results for the 
remanent magnetization (2.18). In this case the distribution of the fields 
does not satisfy both conditions (6.1) and the field is zero or dominates the 
contributions of the two neighbors to the local field. At T = 0  the fields 
only need to be larger than 2J to give the same result. 

The other known result (27) is the calculation of the remanent 
magnetization of the symmetric 1D chain with a continuous distribution of 
the couplings. The result of 1/3 at T =  0 is independent of the details of the 
distribution. The system relaxes exponentially into this state. At small but 
finite temperatures a very slow decay of the remanent magnetization can be 
observed. This model can also be generalized (12) to include asymmetric 
couplings and the fully asymmetric variant of this model is identical to the 
one with quenched favorite neighbors mentioned above. 
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The methods developed in ref. 12 can also be applied to spin glasses 
on Cayley trees with any branching number, but rigorous results are 
available only in the symmetric case. It would be interesting to see how in 
higher dimensions the behavior will evolve with respect to the SK model. 
But this can only be analyzed numerically because analytical results are not 
available. 

A P P E N D I X  A 

Here we calculate the value of the periodic continued fraction (3.15), 
S(2) = l imu~ oo s(N)(2). Consider the map (in the variable 03) 

X1 

X 2 
1 -  

X3 
1 -  

_ 

Xk 

1+03 

with xl . . . . .  x~=x 2:=2 -2 (A.1) 

Then S(2)/2 is identical to the stable fixed point 03fix of the map ~;.,(17) i.e., 

S(2) = 203~x, S~(03~ix) = cofi,, (A.2) 

To calculate the fixed point, one observes that 

where 

~;~(03) = A k -  1 03 + A k ( A . 3 )  

B~ 103 + Bk 

Ap+a =Ap-x2Ap_l;  A_a = -1 ,  A o = 0  
(A.4) 

Bp+~ =Bp-x2Bp 1; B 1 =0,  Bo= 1 

It follows that Ap=x2(pP+-pP)/(p+-p_) and Bp=x2(pp++l-pp+l)/ 
( p + - p  ), with p+ = 1/2_+ (1/4-x2) 1/2 and therefore 

k- -1  k - -  1~ (.t) ~_ ~ k k 
~;.(03)=x 2tp+ - P -  ~ ~ P + - P - ~  (A.5) 

, ~ - - ~ - -  ~-- :-~----  - ~ -  -~-7/~, (p+--p_)03+(p+ --p_ ) 

Thus the fixed point equation (A.2) to be solved is a quadratic equation, 
whose solution is given in the text, (3.17). 
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A P P E N D I X  B 

Here we derive the formula for the moments a~. [Eq. (4.14)] of the 
spectral density p of the matrix A, (3.1). First we observe that 

a~ lim 1 ~ ^~ 1 A ~ = -- /~i= lim Tr (B.I) 
N ~ N i =  1 N ~ N  = 

where 21 ..... 2N are the eigenvalues of the N •  matrix __A. But for any 
matrix __A = (aii) one has 

Tr A ~ = ~ aplp2ap2p3...ap~p I (B.2) 
pI , . . . ,Pv~  { 1,. . . ,  N } 

Since only Ai.i+, v a 0 and all other elements of A vanish, the rhs of (B.2) 
can be viewed as a sum over all possible closed walks of length v in one 
dimension with nearest neighbor jumps only. One starts with an arbitrary 
matrix element, e.g., Ae, i+ ~, and jumps either to the right, i.e., A~+ 1.~+2, or 
to the left, i.e., A~+ 1.~. Since one cannot return to the origin with an odd 
number of steps (note that the diagonal elements are zero), all odd 
moments vanish. Because one has to return to the starting element with 
each element A~,~+I also the correspnding element Ai+~,~ has to occur in 
the product. Therefore a walk of length 2v gives rise to a product 0~--. 0~v, 
where Oi=Ai, i+lAi+l,  i and it+l =il+-1.  

The value of the products depends only upon the frequencies with 
which certain bond pairs are visited. This observation leads us to the intro- 
duction of the combinatorial factor -~(rl,..., r / ) ,  (23) with r I + . - - + r t = v ,  
which counts the number of walks characterized by the frequencies rl,..., rl: 
the leftmost bond pair is visited rl times, the next bond pair (to its right) 
is visited r2 times, etc., and altogether l different bond pairs are visited. All 
these walks lead to weighting factors of the form 

0~ ... 0~j (B.3) 

but the latter still depends on the starting point as well as on the number 
of frequencies to the right of the starting point. 

Now the self-averaging property of (B.1) comes into play: (B.1) is an 
average over all starting points and (in the limit N--, oo) is identical to an 
average over all possible configurations of the random variables 0i~ 
( j =  1 ..... l) in (B.3). Hence, the weighting factor (B.3) of all walks charac- 
terized by the frequencies r l , . . .  , r l becomes (0 rl) ... (or~). Thus we end 
with 

1Tr_AV N~% ~ ~ y(rl , . . . ,r ,)(O ~) . (0  ~') (B.4) 
N - l ~  1 rl,.. . ,rl>~ 1 

r l +  - ' -  + r l = v  

The value of the combinatorial factor is given in the text. 
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